一個有趣的故事 在村有一位手藝高超的理髮師,他只給村上一切不給自己刮臉的人刮臉,那麼,他給不給自己刮臉呢?如果他不給自己刮臉,他是個不給自己刮臉的人,他應當給自己刮臉;如果他給自己刮臉,由於他只給不給自己刮臉的人刮臉,他就不應當給自己刮臉了。他應該如何呢?
數學和哲學界的巨匠──羅素 以上的故事就是著名的「羅素悖論」。羅素(Russell)是英國著名的哲學家和數學家,曾獲得諾貝爾文學獎金。他想把算術系統全歸結於邏輯,所以他與懷海德合作寫的一本巨著《數學原理》。
理髮師的威力 羅素的悖論確是給當時正為了微積分的嚴格基礎被建立而歡欣鼓舞的數學家們潑了一盆冷水,但這個理髮師的力量有多大,竟然可以推倒數學大廈呢?在較高等的數學裡,我們會把整個數學的基礎納入「集合論」之中,換句話說,集合論便是數學大廈的基石,所以當集合論中出現矛盾時,建基於此之上的數學大廈也會站不住腳,而羅素的悖論卻是向著這個基石作出致命的一擊,這個「自己既要屬於自己又同時不屬於自己」的矛盾是在集合論中的矛盾,也就是在數學基礎中的矛盾,只要矛盾一日存在,數學大廈也不可穩固,更會在倒塌的危機,這個也是數學的第三次危機。
解鈴還須繫鈴人? 羅素雖然提出了問題,成為危機的製造者,但同時也是危機的解決者,羅素在他的著作之中提出了層次的理論以解決這個矛盾,使得「自己既要屬於自己又同時不屬於自己」不可能出現。不過,這個層次理論十分複雜,所以數學家要把這個方法加以簡化,而先提出的人是策墨羅,他提出了「有限抽象原則」和幾條公理,及後再由弗蘭克和斯柯倫的補充修改,仍成現在在數學上較為流行公理系統──「ZFS公理系統」。這樣不單只解決了羅素的悖論,令數學從回到嚴緊和無矛盾的領域,而且更促使一門新的數學分支──「數學基礎」有著迅速的發展。
數學危機的啟示 在這三次的數學危機中,我們可以看到數學的發展跟面對問題和正視困難是離不開的,透過克服一次又一次的困難而得到「成長」和完善,越是不怕艱辛,收獲便越大。第一次數學危機使人類突破有理數的局限;第二次數學危機從提數學的嚴緊性和誕生了新的數學分支;第三次數學危機警醒人除了發展各式各樣不同的分支以外,還得回看數學的根基本身,使數學邁向更完備。然而,成功並非一朝一夕,必須經歷無數的挫折和失敗,傷心和失望滿佈成功的路上,但只要不放棄,成功依然是可以達到的。另一方面是要從危機中的學習,學習如何應付之餘,還要學習如何避免再次陷入危機之中。
|